Notice that the payments due are:

Day1	1 penny
Day2	2 pennies
Day3	2^{2} pennies
Day4	2^{3} pennies

Day $30 \quad 2^{29}$ pennies
On the last day alone the payment due is
$2^{29}=536,870,912$ pennies
which, divide by 100 gives
you $\$ 5,368,709$ dollars
And, we have to take into account all the money that was paid in the previous 29 days.

This is a Geometric Progression whose total sum is given by the formula:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{1\left(1-2^{30}\right)}{1-2}=1,073,741,823 \text { pennies }
$$

Which divided by 100 is $\mathbf{\$ 1 0 , 7 3 7 , 4 1 8 . 2 3}$

WOULD YOU BUY MY HOUSE?
My neighbor's house is identical to mine. He just sold his for \$750,000

I'm selling mine to be paid in 30 days as follows:

Day $1 \quad 1$ penney
Day $2 \quad 2$ pennies
Day $3 \quad 4$ pennies
and keep doubling the amount until you get to day 30

Do you think it would be a good deal for the buyer?

Can you calculate the total dollar amount paid?
Answer can be found in professorserna.com/answers

