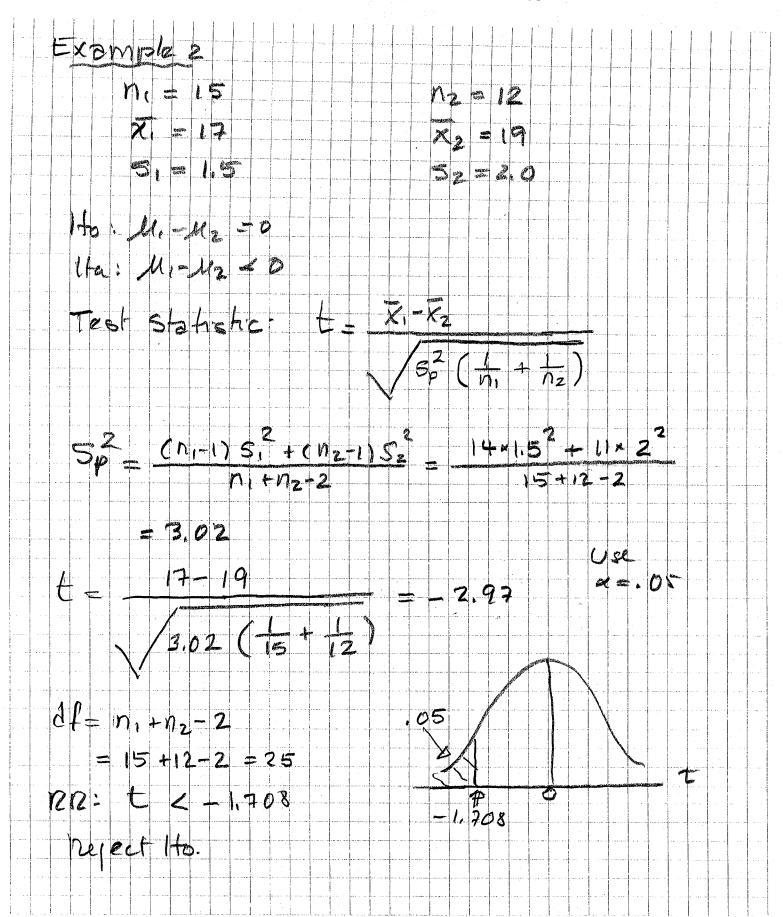
LHYPOTHESIS TESTS INDEPENDENT SAM	EFOR Pues
Example: $n_1 = 40$ $\overline{\lambda}_1 = 17$	112=45
$5_1 = 1.5$ Ho: $11 - 112 = 0$	$X_2 = 19$ $S_2 = 2.0$
Ha: 11, -112 < 0	12-19
1 512 522 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.5° 2.0 45
	12 value 20
,5-,49997 = ,00003 p-value 2,00003	Reject 40
The samples provide conclude, at x = .01, 11 than M.	



ONE SAMPLE HYPOTHESIS TEST ABOUT THE MEAN

Large Samples	σ is known
$H_0: \mu = \mu_0$	$H_{\scriptscriptstyle 0}: \mu=\mu_{\scriptscriptstyle 0}$
$H_a: \mu > \mu_0$	$H_a: \mu > \mu_0$
Test Statistic: $Z = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	Test Statistic: $Z = \frac{\overline{x} - \mu_0}{\sigma \sqrt{n}}$
Small Samples	σ is unknown
Test Statistic: $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	Test Statistic: $t = \frac{\overline{x} - \mu_0}{\sqrt[S]{n}}$
With df = n - 1	With df = n - 1

HYPOTHESIS TEST FOR INDEPENDENT SAMPLES

HIPOTHESIS TEST FOR THE DIFFERENCE BETWEEN TWO POPULATION MEANS

If both samples are large	If $\sigma_{\!_1}$ and $\sigma_{\!_2}$ are known
$H_0: \mu_1 - \mu_2 = D_0$	
$H_a: \mu_1 - \mu_2 > D_0$	$H_0: \mu_1 - \mu_2 = D_0$ $H_a: \mu_1 - \mu_2 > D_0$
Test Statistic: Z = $\frac{\overline{x}_1 - \overline{x}_2 - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$H_a: \mu_1 - \mu_2 > D_0$ Test Statistics: $Z = \frac{\overline{x}_1 - \overline{x}_2 - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
if samples are small	If $\sigma_{\!_1}$ and $\sigma_{\!_2}$ are unknown
Test Statistic: $t = \frac{\overline{x_1} - \overline{x_2} - D_0}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$	Test Statistic: $t = \frac{\overline{x}_1 - \overline{x}_2 - D_0}{\sqrt{S_p^2 (\frac{1}{n_1} + \frac{1}{n_2})}}$
where:	where
$S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ And $df = n_1 + n_2 - 2$	df = $\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2}$
Both Samples must be approximately normally distributed with equal population variances and samples must be independent	not assuming the equality of the variances.
	For most applications a sample size of $n \ge 30$ is adequate.
	If the populations distribution is approximately normal, smaller
	samples may be used. If the distribution is highly skewed, sizes of n≥50 are
	recommended.